
Running GIMF – from Calibration to Simulation

Only one file needs to be run – driver.inp. Driver.inp will run all the other necessary
files.

Summary

Run driver.inp –

1) It runs gimf1.src to create the model
2) It runs startvals.src (macro) to create the database.
3) Simulate the steady-state database.
4) dac.src is used to calibrate the steady state meaningfully in one time period.
5) Also uses flipmod.src (and changesym commands) to calibrate parameters using

other information (i.e. GDP shares).
6) Create a long steady-state database with exogvals.src and re-simulate the steady-

state model.
7) Calibrate the dynamic model parameters (nominal rigidities and real adjustment

costs) meaningfully.
8) Test the model using modeval.src.
9) Using simulate roots and lkroots check the eigenvalues to understand how the

model simulates.
10) runshocks.src generates tables of the calibration and does shocks to the model

(either impulse responses or forecast scenarios).
• It runs the shock in steps (i.e. a 2% shock may be run as four 0.5% shocks,

one on top of the other) or by using the linearised version of the dynamic
model.

• It runs graphs.inp in FAME, which builds tables from the FAME procedure
file graphs.pro.

The Details

The driver file for the largest model in use (either the four-country NBER model, or any
other five country version) has the following sections.

1. Create Starting Values Database "start" and Build the Model Code

This uses gimf1.src, a TROLL macro.
Before building the model, the FAME database start.db is erased and then created. The
list of countries and their names are then defined, as well as the numeraire country (the
"nth country"), which used as a point of comparison for bilateral exchange rates, and the
currency for the one internationally traded bond.

Next, you must specify the leads and lags you want to you when constructing a variety of
tax bases and other variables, all of which are moving average processes (either centred
or not; your choice). The definition of each variable is documented right in the driver
file.

You can then build the GIMF model, from the TROLL macro, gimf1.src.

“compile gimf1.src” builds the TROLL-readable .PRG file (mod1.prg). “&gimf1” runs
the program file, as long as you follow it with at one item for the sector list of six items
(in any order). This are the sectors and features you wish to include in the model besides
the core Blanchard-Yaari overlapping generations framework and the tradable production
sector:
1. NONTRADE - Nontradables sector.
2. OIL - Oil sector.
3. UNION - Labour unionization (defines the producer-paid wage).
4. IMPORTS - Import Agents Sector (defines sticky real imports).
5. RETAIL - Retailing sector.
6. ACCEL - Bernanke-Gertler-Gilchrist financial accelerator sector.

An example model, including all items except nontradable, would be created this way:

&gimf1 oil imports retail union accel;

Then you create an input file for each model (steady-state and dynamic) – ssgimf1.inp
and gimf1.inp.

Finally, the main data file, startvals.src, is inputted into TROLL. It is the TROLL macro
file that loops over each country (every piece of data is listed separately, as a DO
command).

2. Create the Initial Steady-State Simulation

Copies start.db to startss.db and simulates ssgimf1.mod with that data from 1910a to
3000a to create a steady state over all time, that has not yet been calibrated to a specific
calibration. This calibration is merely a symmetric calibration we know will work and
allow the steady-state model to solve.

3. Recalibrate to Create the Steady-State Base Case

This section calibrates all the variables to exact values, but by using mainly dac.src, a
TROLL macro. The methodology is referred to as the “divide-and-conquer (DAC)
algorithm” – instead of moving from value A to the new value Z, which TROLL may not
be able to solve for, the calibration is moved in steps from A to Z via B, C, etc. so that the
model always has a viable and stable solution (provided that the new value of the
parameter does not break some restriction – i.e. being greater than one, when it should be
bounded between zero and one). The calibration is done in one time period only (usually
1970a) so that even large models will simulate rapidly.

A typical dac call is:

&dac 1910a 7 ss 2.5 xi_c_CA, 2.5 xi_c_US;

Here we are calibrating the two countries' elasticity of substitution between domestically
produced tradables and imported tradables.
&dac calls the macro
1910a is the single period in which the steady-state model is recalibrated
7 is the number of pieces the recalibration takes place. For example, assume the initial
value for all variables is 1.8. Then the model will be run consecutively with calibrations
of the parameter at 1.9, 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5.
ss is the alias of the database from which the model draws and writes its simulation data
2.5 xi_c_CA is the value and the name of the parameter to be calibrated. Other
parameters can be calibrated concurrently by stating them in the same fashion on the
same line, separated by a comma.

This section calibrates the most general parameters followed by more specific ones, and
ending with the elasticities.
This means:

1) The world real interest rate;
2) Very general parameters such as the depreciation rate, the inflation target, and

related to the Blanchard-Yaari framework;
3) Some bias parameters;
4) Government debt;
5) GDP shares related to government;
6) The frequency of the model (annual or quarterly);
7) The oil sector;
8) Bias parameters relying on the world trade matrix;

9) Elasticities of substitution for demand and production

When calibrating parameters that include the word _annual, you can always calibrate the
parameters to annualized value, even in a quarterly model. So depkbar_annual, the
depreciation rate, will always be:

&dac 1910a 2 ss 0.10 depkbar_annual_CA, 0.10 depkbar_annual_US;

for a 10% annual depreciation rate (or 2.5% quarterly depreciation rate in a quarterly
model).

We do not use the simulation version of ssgimf1.mod to calibrate. Rather, we are
constantly shifting towards a calibration version, that changes throughout the process,
called ssgimf1flip.mod, since we flip the specification of variables. That is, we exogenize
formerly endogenous ratios, while we concurrently endogenize formerly exogenous
parameters.

We can do this using the TROLL command changesym to change the symbol
designations to exogenous ('x) and endogenous ('n):
changesym 'x ZZ_RR_US
changesym 'n bbetabar_US

where we are exogenizing ZZ_RR_US, the real U.S. interest rate, and endogenizing
bbetabar_US, the rate of time preference in the United States.

For the trade matrix we use the TROLL macro flipmod.src. This allows us to flip the
model – model parameters become endogenous, and paired usually with ratios to GDP
for which we have a long-run view. This normally means bias parameters, for which we
have no real information are flipped with ratios to GDP – this is always true for trade
shares, and sometimes for investment to GDP (with the bias towards capital in the
production function).

An example is:

&flipmod SSGIMF1flip
IMPORTS_T_RAT_CA alphathbar_CA,
IMPORTS_C_RAT_CA alphachbar_CA,
IMPORTS_I_RAT_CA alphaihbar_CA,
IMPORTS_T_RAT_US alphathbar_US,
IMPORTS_C_RAT_US alphachbar_US,
IMPORTS_I_RAT_US alphaihbar_US;
filemod SSGIMF1flip;
usemod SSGIMF1flip;
simulate;
&dac 1910a 10 ss
13 IMPORTS_T_RAT_CA, 18 IMPORTS_C_RAT_CA, 6 IMPORTS_I_RAT_CA,

0.81 IMPORTS_T_RAT_US, 1.6 IMPORTS_C_RAT_US, 0.18 IMPORTS_I_RAT_US,
6.55 POPSIZE_CA, 93.45 POPSIZE_US;

usemod SSGIMF1flip; simulate;

&flipmod endogenizes the import ratios (i.e. IMPORTS_T_RAT_CA) and exogenizes the
bias towards tradable goods in the associated CES aggregator (i.e. alphathbar_CA)

Overall, this section will create and use consecutively the FAME databases ss1.db and
ss2.db.

5. Creating the Full Steady-State Simulation

This section extends the steady state to run from 1910a to 3000a, instead of only being
one point in time (1910a). The TROLL macro &exogvals extends the exogenous data
and parameters to last over the full time horizon, and then by doing a TROLL simulation,
the endogenous variables are extended as well. The end result is put in the FAME
database ss3.db.

6. Removing the Unit Roots

All the unit root variables are removed, so that the dynamic model is ready for testing of
its eigenvalues, and any extraneous clutter is removed.

7. Set the Dynamic Model Parameters That Do Not Affect the Steady
State

Using DO statements in TROLL, those parameters which only appear in the dynamic
model of the GIMF are assigned their proper values. This is done in the FAME database
ss4.db (a copy of ss3.db).

8. Checks of the Model

ss4.db is copied to ss.db. We can now do some analysis of the models.

First, a large number of variables are printed out, allowing us to check out the calibration.

Second, the TROLL macro &modeval uses the open database to compare the value of the
left-hand side of the model equations to the values of their right hand sides. They should
be identical. If they are not, the incorrect value and the equation in question will be
printed out. The steady-state model must work, since it was used to generate the
database. A dynamic model equation will not work if its code is inconsistent with its
steady-state analogue equation. Remember though, just because the dynamic model
passes this test, it does not guarantee the model is correct; it simply guarantees the

dynamic model is the same as the steady-state model (and, potentially, as wrong as the
steady-state model).

Finally, using the TROLL commands “simulate roots” and “lkroots”, the eigenvalues of
the model are computed and printed out (for those eigenvalues between 0.9 and 1.1).
You should check to see

a) the highest eigenvalue with a modulus less than one – it will tell you how long it
will take for the dynamic model to converge to the steady-state model

b) that the number of leads matches the number of eigenvalues with a modulus
greater than one. If the number of leads is less than those roots with modulus
greater than one, then any simulation of the dynamic model will probably explode
instead of converging to the steady state. If the number of leads is greater than
the number of eigenvalues with a modulus of one (and you have no unit roots
present), the model may have a multiplicity of solutions.

9. Run Shocks to the Dynamic Model

This section uses the TROLL macro runshocks.src to first create tables of the baseline
steady state, and then does any shocks on the dynamic model the user wishes to do.
runshocks.src and the files it uses, are explained in full in the following section.

The TROLL macro RUNSHOCKS.SRC

Runshocks.src consists of two major parts –

1) the main() procedure prepares the user’s input about the shock to run, specifies a
new set of nominal and real adjustment costs if the user wishes, runs the shock,
and runs the appropriate tables and graphs using the FAME procedure graphs.inp.

2) procedures that are the shocks to be run on GIMF, whether they be simple
impulse responses or complex agglomerations of shocks. These all call the
TROLL simulation macro simshocks.src.

The procedure is called as follows:

&runshocks gimf1 none basecase nl 2001a 2300a 1 US atstar;

Where:
&runshocks is the name of the macro;
gimf1 is the model to be shocked;
none specifies what type of nominal rigidities and real adjustment costs are to be used
basecase is the subdirectory where the solution will be located. The graphs and tables
will be in the basecase\ under the subdirectory associated with the shock name and the
country (in this case, ATSTARUS\). A further subdirectory data\ will contain five
databases for each shock (see the section on graphs.inp, below);
nl is the solution algorithm to be used – either nl, nonlin or nonlinear to solve the
nonlinear model directly, or lin, lin2 or linear to linearise the model first and then solve
it. (lin2 uses a linearised model already present in the current working directory);
2001a 2300a are the start and end dates of the simulation respectively;
1 is the factor used to numerically linearise the model (see the end of this section on
&runshocks);
US is the two-letter abbreviation for the country or region where the shock occurs;
atstar is the name of the subprocedure in &runshocks that contains the shock(s) you want
to run.

You can also run two shocks consecutively, one stacked on the other:

&runshocks gimf1 none basecase nl 2001a 2300a 1 US atstar eint;

where the U.S. tradable sector productivity shock will be followed by a temporary shock
to the interest rate. The resulting subdirectory created in basecase\ will be
atstaruseintus\.

The procedure main()

This is an automatic procedure, that requires no user intervention; this section is for
information only.

1. Some information about the shock is saved to the TROLL-specific database, the
SAVE database, and the country names are retrieved.

2. Code outlining different options for the nominal and real adjustment costs of
GIMF relative to the baseline calibration (i.e. double the nominal rigidities, one-
half the nominal rigidities, etc.). The user can add groupings if they wish.

3. The shock (identified as newshock) is run. &(newshock) is the appropriate
procedure from the section after the main procedure. The ×ecs macro on
either side of the shock turns the timer of the shock on and off. Once the shock
runs, the elapsed time of the shock will be printed out..

4. If the model is being solved using numeric linearization (explained below), the
next section will appropriately transform the simulation data.

5. The FAME input file graphs.inp is run in FAME. It is explained further in its
own section.

A typical shock subprocedure – ATSTAR()

The subprocedure is named to reflect the shock it is performing. First, you specify a title
for the shock to be used in the graphs and tables using shocktitle:

>> do shk_shocktitle = .SCTRY.||": Permanent 2% Increase in Tradable Sector
Productivity";

where .SCTRY. is variable representing the country you called in your &runshocks call,
the United States.

 You set the shock using the TROLL macro &simeq, which needs the date range and the
expression for the shock, coded either as a number:

≃ >> 2001a to 2300a “shk_atstar_us = con_atstar_us(-1)*1.01”

or as an equation:

≃ >> 2001a to 2300a “shk_atstar_us = con_atstar_us(-1)**0.60
(con_atstar_us(1+0.01/factor))**(1-0.60)”

where factor is for numeric linearization (see the next section for an explanation).

You can also use mathematical expressions and/or variables for dates, provided they are
enclosed in quotation marks:

≃ >> 2001a to “2001a+299” “shk_atstar_us = con_atstar_us(-1)*1.01”
≃ >> “&(sdate)” to “&(sdate)+299” “shk_atstar_us = con_atstar_us(-1)*1.01”

The procedure will then simulate the shock by calling on the simulation subprocedure
&simshock, where the call for &simshock in ATSTAR() is following:

& simshock; >> 1 PERMANENT atstar_&(cc);

Where:
& simshock calls the subprocedure for solving the model using nonlinear methods;
 >> passes the appropriate arguments to & simshock (this is called the queue-input
statement);
1 is the number of pieces you want to run the shock in. In this case, a one percent
productivity shock with be run as 1% shock. If it fails, it will try run it in 2 steps, each
step as a 0.5% shocks, where the second step uses the results of the first step as its
starting point. If that fails it will run it in 4 steps of 0.25% each, and so on. If you
specified the number 2 instead, it will only try to run the shock as in two steps, each step
being a 0.5%;
PERMANENT is the start of the list of permanent shocks you are running – this can be
either “none”, or in this case we are running the shock atstar_&(cc), which is a
permanent productivity shock. This code is only relevant if you are running the
linearised model.

A Note on Numeric Linearization

Numeric linearization is where you linearise the nonlinear model in the neighbourhood of
the steady-state numerically, rather than writing a fully linear version of the model code.

You specify the numeric linearization factor as a number that is large enough to
guarantee the model is fully linear in its solution. For example, if you pick a numeric
linearization factor of 100, a factor of 101 or of 99 should give the exact same solution.

It executes as follows:
1) The database variable factor is created.
2) When specifying the shock using &simeq, it should be divided by factor. i.e.

≃ >> 2001a to 2300a “shk_atstar_us = con_atstar_us(-1)*1.05”

should be written as:

≃ >> 2001a to 2300a “shk_atstar_us = con_atstar_us(-1)*(1+0.05/factor)”

3) Once the model is simulated using shock/factor, the shock minus control answer of

the shock is multiplied by factor, and added back onto the control database.

Therefore, a 1% tradables productivity shock with a numeric linearization factor will be
simulated as a 0.01% shock, and the results will be multiplied by 100, to give a numeric
approximation of the full 1% tradables productivity shock.

The FAME procedure GRAPHS.INP

Graphs.inp runs all the graphs and tables in FAME for the model. It is an automatic
procedure, that requires no user intervention; this section is for information only.

Graphs.inp relies on the group of FAME procedures in graphs.pro to modify databases,
table the steady state, and graph the results. In our example so far, we ran a tradables
sector productivity shock on the United States, in the subdirectory basecase, under which
a new subdirectory ATSTARUS will created , along with data

The output in basecase\data will be five databases:

1. atstar_us_none.db – Shock database (corrected for the numeric linearization
factor, if any was used in the simulation).

2. atstar_us_none_con.db – Control database (corrected for the numeric
linearization factor, if any was used in the simulation).

3. atstar_us_none_ss.db – Control steady-state database (the control database for the
correction of the numeric linearization).

4. atstar_us_none_o.db – Shock database (as simulated - i.e. divided by numeric
linearization factor).

5. atstar_us_none_cono.db – Control database (as simulated - i.e. divided by
numeric linearization factor) .

The output in basecase\atstarus will be:

1. reportss.ps – reports the steady state of the model after the shock (for temporary
shocks, it should be unchanged). Includes the national accounts, the trade matrix,
and the model parameterization.

2. tables.ps – reports the short-run dynamics of the model after the shock, relative to
the control case. Includes the national accounts, assets and debt, monetary policy,
and the fiscal, corporate and financial sectors.

3. 18 individual pages of graphs – all numbered and named, for each country,
showing most of the major variables in GIMF.

4. fullpack_US.ps and fullpack_CA.ps– all 18 pages of graphs in one package for
each country.

5. financesummary.ps – there are two pages of graphs per country; a survey page
and a page of financial / corporate sector variables.

6. the subdirectory PDF\ – contains certain individual graph pages replicated as
PDF files, for each country.

The TROLL procedure SIMSHOCKS.SRC

This procedure is a group of simulation procedures for solving GIMF. No user
intervention is ever required here. This section is simply for information.

&simshock can simulate the nonlinear model (either in full, or using a numeric
linearization technique) or the linearised model (using the technique found in DYNARE).
It will use one of three procedures to run the model:

1. stepsimulate if the call to &simshock specifies “1”, and the call to &runshocks
specified “nl”, “nonlin”, or “nonlinear”.

2. stepshock if the call to &simshock specifies a number greater than one, and the
call to &runshocks specified “nl”, “nonlin”, or “nonlinear”.

3. simulateshock if the call to &simshock specifies “1”, and the call to &runshocks
specified “lin”, “lin2”, or “linear”.

Procedures 1 and 2 will use the numeric linearization technique, if the numeric
linearization factor is greater than one. Obviously, the third procedure does not need it.

The procedure stepshock()
This subprocedure is the algorithm that allows large shocks to be split into steps and run
consecutively and cumulatively to get the final answer. The number of steps is specified
by the user. It is a more robust method to solve highly nonlinear models, that is using the
divide-and-conquer (DAC) algorithm.

The procedure stepsimulate()
This subprocedure is similar to stepshock. It is invoked when the number of steps
specified is “1”. It, too, uses the DAC algorithm. If the simulation fails, it will re-try it
with 2 steps (50% of the intended shock). It will split it to steps as small as 1.5625% of
the original shock. It will save every step that works, and will print out whatever fraction
of the shock worked through the normal graphics package. The title of the shock will be
altered to reflect this. For example, the title:
United States: 1% Permanent Increase in Tradables Productivity
will become:
United States: 1% Permanent Increase in Tradables Productivity (46.875% of the shock)

The procedure simulateshock()
This subprocedure is the algorithm that linearises the nonlinear model using the
linearization routine also found in DYNARE. In other words, all the endogenous
variables are rewritten as functions of the lagged state variables and the contemporaneous
exogenous variables. For permanent shocks, the model is linearised around the new
steady-state, not that of the control case.

	Running GIMF – from Calibration to Simulation
	Summary
	The Details
	2. Create the Initial Steady-State Simulation
	3. Recalibrate to Create the Steady-State Base Case
	5. Creating the Full Steady-State Simulation
	6. Removing the Unit Roots
	8. Checks of the Model
	9. Run Shocks to the Dynamic Model

	The TROLL macro RUNSHOCKS.SRC
	The TROLL procedure SIMSHOCKS.SRC

